# Upload products with embeddings
client.upload_vectors(
namespace_name="products",
vectors=[
{
"id": "prod-001",
"vector": [0.1, 0.2, ...], # Product embedding
"name": "Wireless Headphones",
"category": "electronics",
"price": 99.99
}
]
)
# Get recommendations based on user interest
def get_recommendations(user_interest_vector, num_recommendations=5):
results = client.search(
namespaces=["products"],
query=user_interest_vector,
top_k=num_recommendations
)
return [
{
"name": match["name"],
"score": match["score"],
"category": match["category"]
}
for match in results["matches"]
]
# Get personalized recommendations
recommendations = get_recommendations(user_vector, num_recommendations=5)